Constructing Hyper-Bent Functions from Boolean Functions with the Walsh Spectrum Taking the Same Value Twice
نویسندگان
چکیده
Hyper-bent functions as a subclass of bent functions attract much interest and it is elusive to completely characterize hyper-bent functions. Most of known hyper-bent functions are Boolean functions with Dillon exponents and they are often characterized by special values of Kloosterman sums. In this paper, we present a method for characterizing hyper-bent functions with Dillon exponents. A class of hyper-bent functions with Dillon exponents over F22m can be characterized by a Boolean function over F2m , whose Walsh spectrum takes the same value twice. Further, we show several classes of hyper-bent functions with Dillon exponents characterized by Kloosterman sum identities and the Walsh spectra of some common Boolean functions.
منابع مشابه
On generalized semi-bent (and partially bent) Boolean functions
In this paper, we obtain a characterization of generalized Boolean functions based on spectral analysis. We investigate a relationship between the Walsh-Hadamard spectrum and σ f , the sum-of-squares-modulus indicator (SSMI) of the generalized Boolean function. It is demonstrated that σ f = 22n+s for every s-plateaued generalized Boolean function in n variables. Two classes of generalized semi-...
متن کاملOn Boolean Functions Which Are Bent and Negabent
Bent functions f : F2 → F2 achieve largest distance to all linear functions. Equivalently, their spectrum with respect to the Hadamard-Walsh transform is flat (i.e. all spectral values have the same absolute value). That is equivalent to saying that the function f has optimum periodic autocorrelation properties. Negaperiodic correlation properties of f are related to another unitary transform c...
متن کاملThe Bent and Hyper-Bent Properties of a Class of Boolean Functions
This paper considers the bent and hyper-bent properties of a class of Boolean functions. For one case, we present a detailed description for them to be hyper-bent functions, and give a necessary condition for them to be bent functions for another case. Keywords—Boolean functions, bent functions, hyper-bent
متن کاملGeneralized Semi-bent and Partially Bent Boolean Functions
In this article, a relationship between the Walsh-Hadamard spectrum and σ f , the sum-of-squares-modulus indicator (SSMI) of the generalized Boolean function is presented. It is demonstrated for every s-plateaued generalized Boolean function in n variables that σ f = 22n+s. Two constructions on generalized semi-bent Boolean functions are presented. A class of generalized semi-bent functions in ...
متن کاملOn cross-correlation spectrum of generalized bent functions in generalized Maiorana-McFarland class
In this paper, we obtain the cross-correlation spectrum of generalized bent Boolean functions in a subclass of MaioranaMcFarland class (GMMF). An affine transformation which preserve the cross-correlation spectrum of two generalized Boolean functions, in absolute value is also presented. A construction of generalized bent Boolean functions in (n+ 2) variables from four generalized Boolean funct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014