Constructing Hyper-Bent Functions from Boolean Functions with the Walsh Spectrum Taking the Same Value Twice

نویسندگان

  • Chunming Tang
  • Yanfeng Qi
چکیده

Hyper-bent functions as a subclass of bent functions attract much interest and it is elusive to completely characterize hyper-bent functions. Most of known hyper-bent functions are Boolean functions with Dillon exponents and they are often characterized by special values of Kloosterman sums. In this paper, we present a method for characterizing hyper-bent functions with Dillon exponents. A class of hyper-bent functions with Dillon exponents over F22m can be characterized by a Boolean function over F2m , whose Walsh spectrum takes the same value twice. Further, we show several classes of hyper-bent functions with Dillon exponents characterized by Kloosterman sum identities and the Walsh spectra of some common Boolean functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On generalized semi-bent (and partially bent) Boolean functions

In this paper, we obtain a characterization of generalized Boolean functions based on spectral analysis. We investigate a relationship between the Walsh-Hadamard spectrum and σ f , the sum-of-squares-modulus indicator (SSMI) of the generalized Boolean function. It is demonstrated that σ f = 22n+s for every s-plateaued generalized Boolean function in n variables. Two classes of generalized semi-...

متن کامل

On Boolean Functions Which Are Bent and Negabent

Bent functions f : F2 → F2 achieve largest distance to all linear functions. Equivalently, their spectrum with respect to the Hadamard-Walsh transform is flat (i.e. all spectral values have the same absolute value). That is equivalent to saying that the function f has optimum periodic autocorrelation properties. Negaperiodic correlation properties of f are related to another unitary transform c...

متن کامل

The Bent and Hyper-Bent Properties of a Class of Boolean Functions

This paper considers the bent and hyper-bent properties of a class of Boolean functions. For one case, we present a detailed description for them to be hyper-bent functions, and give a necessary condition for them to be bent functions for another case. Keywords—Boolean functions, bent functions, hyper-bent

متن کامل

Generalized Semi-bent and Partially Bent Boolean Functions

In this article, a relationship between the Walsh-Hadamard spectrum and σ f , the sum-of-squares-modulus indicator (SSMI) of the generalized Boolean function is presented. It is demonstrated for every s-plateaued generalized Boolean function in n variables that σ f = 22n+s. Two constructions on generalized semi-bent Boolean functions are presented. A class of generalized semi-bent functions in ...

متن کامل

On cross-correlation spectrum of generalized bent functions in generalized Maiorana-McFarland class

In this paper, we obtain the cross-correlation spectrum of generalized bent Boolean functions in a subclass of MaioranaMcFarland class (GMMF). An affine transformation which preserve the cross-correlation spectrum of two generalized Boolean functions, in absolute value is also presented. A construction of generalized bent Boolean functions in (n+ 2) variables from four generalized Boolean funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014